Kev muab cov khoom siv hluav taws xob ruaj khov yog ib qho kev sib tw tseem ceeb tshaj plaws ntawm lub xyoo pua no. Cov chaw tshawb fawb hauv cov khoom siv hluav taws xob los ntawm qhov kev txhawb siab no, suav nrog thermoelectric1, photovoltaic2 thiab thermophotovoltaics3. Txawm hais tias peb tsis muaj cov ntaub ntawv thiab cov khoom siv uas muaj peev xwm sau tau lub zog hauv Joule ntau, cov ntaub ntawv pyroelectric uas tuaj yeem hloov hluav taws xob hluav taws xob mus rau qhov kub thiab txias hloov pauv tau suav tias yog sensors4 thiab cov khoom siv hluav taws xob 5,6,7. Ntawm no peb tau tsim lub macroscopic thermal zog harvester nyob rau hauv daim ntawv ntawm ib tug multilayer capacitor ua los ntawm 42 grams ntawm cov hlau lead scandium tantalate, ua 11.2 J ntawm hluav taws xob lub zog ib lub voj voog thermodynamic. Txhua lub pyroelectric module tuaj yeem tsim hluav taws xob zog ceev txog li 4.43 J cm-3 ib lub voj voog. Peb kuj qhia tau hais tias ob lub modules uas hnyav 0.3 g yog txaus kom tsis tu ncua lub hwj chim autonomous zog harvesters nrog embedded microcontrollers thiab kub sensors. Thaum kawg, peb qhia tau hais tias rau qhov kub ntawm 10 K, cov multilayer capacitors tuaj yeem ncav cuag 40% Carnot efficiency. Cov khoom no yog vim (1) ferroelectric theem hloov rau kev ua haujlwm siab, (2) tsis tshua muaj hluav taws xob tam sim no los tiv thaiv kev poob, thiab (3) siab tawg voltage. Cov macroscopic, scalable thiab muaj txiaj ntsig pyroelectric fais fab tuag yog rov ua dua tshiab lub zog hluav taws xob.
Piv nrog rau qhov kub thiab txias gradient xav tau rau cov ntaub ntawv thermoelectric, lub zog sau cov khoom siv hluav taws xob yuav tsum tau ntsuas kub ntawm lub sijhawm. Qhov no txhais tau hais tias lub voj voog thermodynamic, uas yog qhov zoo tshaj plaws piav qhia los ntawm entropy (S)-temperature (T) daim duab. Daim duab 1a qhia txog ST zajlus ntawm cov khoom siv uas tsis yog-linear pyroelectric (NLP) qhia txog kev hloov pauv ferroelectric-paraelectric theem nyob rau hauv scandium lead tantalate (PST). Cov ntu xiav thiab ntsuab ntawm lub voj voog ntawm daim duab ST sib haum mus rau lub zog hloov hluav taws xob hauv Olson lub voj voog (ob ntu isothermal thiab ob ntu isopole). Ntawm no peb xav txog ob lub voj voog nrog tib lub chaw hluav taws xob hloov pauv (teb rau thiab tawm) thiab qhov kub thiab txias hloov ΔT, txawm tias muaj qhov sib txawv ntawm qhov pib kub. Lub voj voog ntsuab tsis nyob hauv cheeb tsam hloov pauv theem thiab yog li muaj thaj tsam me dua li lub voj voog xiav nyob hauv thaj tsam hloov pauv theem. Hauv daim duab ST, thaj tsam loj dua, qhov ntau dua lub zog sau. Yog li ntawd, cov theem kev hloov pauv yuav tsum sau ntau zog. Qhov kev xav tau rau thaj chaw loj caij tsheb kauj vab hauv NLP yog qhov zoo ib yam li qhov xav tau ntawm electrothermal applications9, 10, 11, 12 qhov twg PST multilayer capacitors (MLCs) thiab PVDF-based terpolymers tsis ntev los no tau pom zoo rov qab ua haujlwm. Kev ua haujlwm txias txias hauv lub voj voog 13,14,15,16. Yog li ntawd, peb tau txheeb xyuas PST MLCs ntawm kev txaus siab rau thermal zog sau. Cov qauv no tau piav qhia tag nrho hauv cov txheej txheem thiab muaj cov ntawv sau ntxiv 1 (scanning electron microscopy), 2 (X-ray diffraction) thiab 3 (calorimetry).
a, Sketch of an entropy (S)-temperature (T) plot nrog hluav taws xob teb rau thiab tawm siv rau NLP cov ntaub ntawv uas qhia cov theem hloov. Ob lub zog sib sau ua ke tau pom nyob rau hauv ob qhov sib txawv ntawm qhov kub thiab txias. Cov voj voog xiav thiab ntsuab tshwm sim sab hauv thiab sab nraud ntawm lub sijhawm hloov pauv, feem, thiab xaus rau ntau qhov sib txawv ntawm qhov chaw. b, ob lub DE PST MLC unipolar rings, 1 hli tuab, ntsuas ntawm 0 thiab 155 kV cm-1 ntawm 20 ° C thiab 90 ° C, raws li, thiab cov sib thooj Olsen cycles. Cov tsiaj ntawv ABCD hais txog ntau lub xeev hauv Olson lub voj voog. AB: MLCs raug them rau 155 kV cm-1 ntawm 20 ° C. BC: MLC tau khaws cia ntawm 155 kV cm-1 thiab qhov kub tau nce mus rau 90 ° C. CD: MLC tawm ntawm 90 ° C. DA: MLC txias rau 20 ° C hauv xoom teb. Cov cheeb tsam xiav sib raug rau cov tswv yim lub zog xav tau los pib lub voj voog. Lub cheeb tsam txiv kab ntxwv yog lub zog sau nyob rau hauv ib lub voj voog. c, sab saum toj vaj huam sib luag, voltage (dub) thiab tam sim no (liab) piv rau lub sij hawm, taug qab thaum tib lub voj voog Olson li b. Ob qhov ntxig rau sawv cev rau kev nthuav dav ntawm qhov voltage thiab tam sim no ntawm cov ntsiab lus tseem ceeb hauv lub voj voog. Nyob rau hauv lub vaj huam sib luag qis, cov kab nkhaus daj thiab ntsuab sawv cev rau qhov sib thooj ntawm qhov kub thiab lub zog nkhaus, feem, rau 1 hli tuab MLC. Lub zog yog xam los ntawm qhov tam sim no thiab voltage curves ntawm lub vaj huam sib luag sab saum toj. Lub zog tsis zoo sib xws rau lub zog sau. Cov kauj ruam sib raug rau cov ntawv loj hauv plaub daim duab yog tib yam li hauv Olson lub voj voog. Lub voj voog AB'CD sib raug rau lub voj voog Stirling (ntxiv daim ntawv 7).
qhov twg E thiab D yog lub teb hluav taws xob thiab hluav taws xob hloov chaw, feem. Nd tuaj yeem tau txais ncaj qha los ntawm DE Circuit Court (Daim duab 1b) lossis ncaj qha los ntawm kev pib lub voj voog thermodynamic. Cov txheej txheem tseem ceeb tshaj plaws tau piav qhia los ntawm Olsen hauv nws txoj haujlwm pioneering ntawm kev sau cov hluav taws xob hluav taws xob hauv xyoo 1980s17.
Ntawm daim duab. 1b qhia ob lub monopolar DE loops ntawm 1 hli tuab PST-MLC cov qauv sib sau ua ke ntawm 20 ° C thiab 90 ° C, raws li, dhau ntawm ntau yam ntawm 0 txog 155 kV cm-1 (600 V). Ob lub voj voog no tuaj yeem siv los ntsuas qhov tsis ncaj ntawm lub zog sau los ntawm Olson lub voj voog qhia hauv daim duab 1a. Qhov tseeb, lub voj voog Olsen muaj ob ceg isofield (ntawm no, xoom teb hauv DA ceg thiab 155 kV cm-1 hauv BC ceg) thiab ob ceg isothermal (ntawm no, 20 ° C thiab 20 ° C hauv AB ceg) . C hauv CD ceg) Lub zog sau thaum lub voj voog sib raug rau thaj tsam txiv kab ntxwv thiab xiav (EdD integral). Lub zog sau Nd yog qhov sib txawv ntawm cov tswv yim thiab cov khoom siv hluav taws xob, piv txwv li tsuas yog thaj tsam txiv kab ntxwv hauv daim duab. 1b ib. Lub voj voog Olson tshwj xeeb no muab Nd lub zog ntom ntom ntawm 1.78 J cm-3. Lub voj voog Stirling yog lwm txoj hauv kev rau Olson lub voj voog (Cov Lus Qhia Ntxiv 7). Vim tias cov theem them tas mus li (qhib Circuit Court) yooj yim dua mus txog, lub zog ceev tau muab rho tawm los ntawm daim duab 1b (lub voj voog AB'CD) ncav cuag 1.25 J cm-3. Qhov no tsuas yog 70% ntawm qhov Olson lub voj voog tuaj yeem sau tau, tab sis cov cuab yeej sau tau yooj yim ua nws.
Tsis tas li ntawd, peb ncaj qha ntsuas lub zog khaws cia thaum lub voj voog Olson los ntawm kev siv zog PST MLC siv lub Linkam kub tswj theem thiab qhov ntsuas qhov ntsuas (txoj kev). Daim duab 1c nyob rau sab saum toj thiab hauv cov insets qhia tau hais tias tam sim no (liab) thiab voltage (dub) sau rau tib lub 1 hli tuab PST MLC rau DE voj mus los ntawm tib lub voj voog Olson. Qhov tam sim no thiab voltage ua rau nws muaj peev xwm los xam lub zog sau, thiab cov curves tau qhia hauv daim duab. 1c, hauv qab (ntsuab) thiab kub (daj) thoob plaws lub voj voog. Cov tsiaj ntawv ABCD sawv cev rau tib lub voj voog Olson hauv daim duab 1. MLC them nyiaj tshwm sim thaum lub sij hawm AB ceg thiab nqa tawm ntawm qhov qis tam sim no (200 µA), yog li SourceMeter tuaj yeem tswj kev them nyiaj kom zoo. Qhov tshwm sim ntawm qhov tsis tu ncua tam sim no yog tias qhov hluav taws xob nkhaus (dub nkhaus) tsis yog linear vim qhov tsis yog-linear muaj peev xwm hloov chaw D PST (Fig. 1c, sab saum toj inset). Thaum kawg ntawm kev them nyiaj, 30 mJ ntawm lub zog hluav taws xob khaws cia hauv MLC (point B). Lub MLC ces heats li thiab ib tug tsis zoo tam sim no (thiab yog li ntawd ib tug tsis zoo tam sim no) yog tsim thaum lub voltage tseem nyob rau ntawm 600 V. Tom qab 40 s, thaum kub mus txog ib tug toj siab ntawm 90 ° C, qhov tam sim no tau them, txawm hais tias cov kauj ruam qauv. ua nyob rau hauv Circuit Court ib tug hluav taws xob hwj chim ntawm 35 mJ thaum lub sij hawm no isofield (thib ob inset nyob rau hauv daim duab 1c, saum). Qhov hluav taws xob ntawm MLC (qhab CD) tom qab ntawd txo qis, ua rau muaj 60 mJ ntxiv ntawm hluav taws xob ua haujlwm. Tag nrho cov zis zog yog 95 mJ. Lub zog sau tau yog qhov sib txawv ntawm lub zog tawm tswv yim thiab cov zis, uas muab 95 - 30 = 65 mJ. Qhov no sib raug rau lub zog ceev ntawm 1.84 J cm-3, uas yog ze heev rau Nd muab rho tawm los ntawm DE nplhaib. Kev rov tsim dua tshiab ntawm Olson lub voj voog no tau raug sim ntau heev (Cov Lus Qhia Ntxiv 4). Los ntawm kev nce ntxiv thiab qhov kub thiab txias, peb tau ua tiav 4.43 J cm-3 siv Olsen cycles hauv 0.5 mm tuab PST MLC tshaj qhov kub ntawm 750 V (195 kV cm-1) thiab 175 ° C (Ntawv qhia zaub mov 5). Qhov no yog plaub zaug ntau dua qhov kev ua tau zoo tshaj plaws tau tshaj tawm hauv cov ntaub ntawv rau cov voj voog ncaj qha Olson thiab tau txais ntawm cov yeeb yaj kiab nyias ntawm Pb(Mg,Nb)O3-PbTiO3 (PMN-PT) (1.06 J cm-3)18 (cm .Supplementary Table 1 rau ntau qhov tseem ceeb hauv cov ntaub ntawv). Qhov kev ua tau zoo no tau mus txog vim qhov tsis tshua muaj dej ntws tam sim no ntawm MLCs (<10−7 A ntawm 750 V thiab 180 ° C, saib cov ntsiab lus hauv Cov Lus Qhia Ntxiv 6) - qhov tseem ceeb ntawm Smith li al.19 - sib piv rau cov ntaub ntawv siv hauv kev kawm ua ntej 17,20. Qhov kev ua tau zoo no tau mus txog vim qhov tsis tshua muaj dej ntws tam sim no ntawm MLCs (<10−7 A ntawm 750 V thiab 180 ° C, saib cov ntsiab lus hauv Cov Lus Qhia Ntxiv 6) - qhov tseem ceeb ntawm Smith li al.19 - sib piv rau cov ntaub ntawv siv hauv kev kawm ua ntej 17,20. Эти характеристики были достигнуты благодаря очень низкому току утечки этих MLC (<10–7 А днтри при 750 Всо в при 750 ° C дополнительном примечании 6) — критический момент, упомянутый Смитом и др. 19— в отличие от к материалам, использованным в более ранних исследованиях 17,20. Cov yam ntxwv no tau ua tiav vim qhov tsis tshua muaj dej ntws tam sim no ntawm MLCs (<10–7 A ntawm 750 V thiab 180 ° C, saib Cov Lus Qhia Ntxiv 6 kom paub meej) - cov ntsiab lus tseem ceeb tau hais los ntawm Smith li al. 19 - piv rau cov khoom siv hauv kev kawm ua ntej 17,20.由于这些MLC 的泄漏电流非常低(在750 V 和180°C 时<10-7 A,请参见补充说明6中的详簆时人。。关键点——相比之下, 已经达到了这种性能到早期研究中使用的材料17,20.由于这些 mlc的泄漏非常(在在 750 V 和 180°C 时 <10-7 A 人,参见补充 说明 6 中详)提到关键 关键 点相比之下相比之下相比之下 相比之下相比之下 相比之下 相比之下相比之下之之之下下 相比之下 相比之下 相比之下相比之下 相比之下 相比之下 相比之下 相比之下 相比之下相比之下 相比之下舩之不耰Lub Plaub Hlis 17.20. Поскольку ток утечки этих MLC очень низкий (<10–7 А при 750 Ви 180°C, см. подробности в дополнитель) момент, упомянутый Смитом и др. 19—Yawmsaub has le hov, tug quaspuj hov tug quaspuj hab tug quaspuj. Txij li thaum cov xau tam sim no ntawm MLCs no tsawg heev (<10–7 A ntawm 750 V thiab 180 ° C, saib Cov Lus Qhia Ntxiv 6 kom paub meej) - cov ntsiab lus tseem ceeb tau hais los ntawm Smith li al. 19 - rau kev sib piv, cov kev ua yeeb yam no tau ua tiav.rau cov ntaub ntawv siv hauv kev kawm ua ntej 17,20.
Cov xwm txheej tib yam (600 V, 20-90 ° C) tau siv rau lub voj voog Stirling (Cov Lus Qhia Ntxiv 7). Raws li kev cia siab los ntawm cov txiaj ntsig ntawm DE voj voog, cov txiaj ntsig yog 41.0 mJ. Ib qho tshwj xeeb tshaj plaws ntawm Stirling cycles yog lawv lub peev xwm los nthuav tawm qhov pib voltage los ntawm cov nyhuv thermoelectric. Peb pom qhov hluav taws xob nce mus txog 39 (los ntawm qhov pib qhov hluav taws xob ntawm 15 V mus rau qhov kawg ntawm qhov hluav taws xob mus txog 590 V, saib Ntxiv daim duab 7.2).
Lwm qhov txawv ntawm cov MLCs no yog tias lawv yog cov khoom macroscopic loj txaus los sau lub zog hauv joule ntau yam. Yog li ntawd, peb tsim ib tug qauv sau qoob loo (HARV1) siv 28 MLC PST 1 hli tuab, ua raws li tib lub phaj sib luag tsim tau piav qhia los ntawm Torello li al.14, hauv 7 × 4 matrix raws li qhia hauv daim duab. lub manifold yog txav los ntawm ib lub twj tso kua mis peristaltic ntawm ob lub reservoirs qhov twg cov dej kub yog khaws cia tas li (txoj kev). Sau txog 3.1 J siv lub voj voog Olson tau piav qhia hauv daim duab. 2a, thaj chaw isothermal ntawm 10 ° C thiab 125 ° C thiab thaj chaw isofield ntawm 0 thiab 750 V (195 kV cm-1). Qhov no sib raug rau lub zog ceev ntawm 3.14 J cm-3. Siv cov kev sib xyaw ua ke no, kev ntsuas tau raug coj los ntawm ntau yam xwm txheej (Fig. 2b). Nco ntsoov tias 1.8 J tau txais dhau qhov kub ntawm 80 ° C thiab qhov hluav taws xob ntawm 600 V (155 kV cm-1). Qhov no yog nyob rau hauv kev pom zoo nrog rau yav tas los hais 65 mJ rau 1 hli tuab PST MLC nyob rau hauv tib yam kev mob (28 × 65 = 1820 mJ).
a, Kev sim teeb tsa ntawm kev sib sau ua ke HARV1 qauv raws li 28 MLC PSTs 1 hli tuab (4 kab × 7 kab) khiav ntawm Olson cycles. Rau txhua qhov ntawm plaub lub voj voog, qhov kub thiab qhov hluav taws xob tau muab rau hauv cov qauv. Lub khoos phis tawj tsav lub twj tso kua mis peristaltic uas nthuav tawm cov kua dej dielectric ntawm cov dej txias thiab kub, ob lub li qub, thiab lub zog hluav taws xob. Lub khoos phis tawj kuj tseem siv cov thermocouples los sau cov ntaub ntawv ntawm qhov hluav taws xob thiab cov khoom siv tam sim no rau tus qauv thiab qhov kub thiab txias ntawm kev sib txuas los ntawm cov khoom siv hluav taws xob. b, Zog (xim) sau los ntawm peb 4 × 7 MLC qauv piv rau qhov kub thiab txias (X-axis) thiab qhov hluav taws xob (Y-axis) hauv kev sim sib txawv.
Ib tug loj version ntawm lub harvester (HARV2) nrog 60 PST MLC 1 hli tuab thiab 160 PST MLC 0.5 hli tuab (41.7 g active pyroelectric khoom) muab 11.2 J (Suab ntxiv 8). Xyoo 1984, Olsen tau tsim lub tshuab hluav taws xob raws li 317 g ntawm tin-doped Pb (Zr, Ti) O3 compound muaj peev xwm tsim hluav taws xob 6.23 J ntawm qhov kub txog li 150 ° C (ref. 21). Rau qhov sib xyaw ua ke, qhov no tsuas yog lwm tus nqi muaj nyob hauv joule ntau yam. Nws tau txais tsuas yog ib nrab ntawm tus nqi peb ua tiav thiab ze li xya npaug ntawm qhov zoo. Qhov no txhais tau hais tias lub zog ceev ntawm HARV2 yog 13 npaug siab dua.
Lub sijhawm HARV1 lub voj voog yog 57 vib nas this. Qhov no tsim 54 mW ntawm lub zog nrog 4 kab ntawm 7 kab ntawm 1 hli tuab MLC teeb. Txhawm rau ua nws ib kauj ruam ntxiv, peb tsim ib qho kev sib txuas thib peb (HARV3) nrog 0.5 hli tuab PST MLC thiab teeb tsa zoo sib xws rau HARV1 thiab HARV2 (Cov Lus Qhia Ntxiv 9). Peb ntsuas lub sij hawm thermalization ntawm 12.5 vib nas this. Qhov no sib raug mus rau lub sij hawm voj voog ntawm 25 s (Supplementary Fig. 9). Lub zog sib sau ua ke (47 mJ) muab lub zog hluav taws xob ntawm 1.95 mW ib MLC, uas ua rau peb xav txog tias HARV2 tsim 0.55 W (kwv yees 1.95 mW × 280 PST MLC 0.5 mm tuab). Tsis tas li ntawd, peb simulated hloov cov cua sov siv Finite Element Simulation (COMSOL, Supplementary Note 10 thiab Supplementary Tables 2–4) sib xws rau cov kev sim HARV1. Kev ua qauv zoo kawg nkaus ua rau nws muaj peev xwm kwv yees cov nqi hluav taws xob yuav luag qhov kev txiav txim siab dua (430 mW) rau tib tus naj npawb ntawm PST txhua kab los ntawm thinning MLC rau 0.2 hli, siv dej ua kom txias, thiab kho cov matrix rau 7 kab. . × 4 kab (ntxiv rau , muaj 960 mW thaum lub tank nyob ib sab ntawm kev sib txuas, Ntxiv Fig. 10b).
Txhawm rau ua kom pom qhov muaj txiaj ntsig ntawm cov khoom siv no, lub voj voog Stirling tau siv rau ib tus neeg sawv cev ntawm ib leeg uas muaj tsuas yog ob lub 0.5 hli tuab PST MLCs ua cov khoom siv hluav taws xob, qhov hloov hluav taws xob siab, hloov hluav taws xob tsawg nrog lub kaw lus cia, DC / DC converter , lub zog qis microcontroller, ob lub thermocouples thiab boost converter (Cov Lus Qhia Ntxiv 11). Lub Circuit Court yuav tsum tau lub capacitor cia rau thawj zaug them ntawm 9V thiab tom qab ntawd khiav autonomously thaum qhov kub ntawm ob MLCs nyob ntawm -5 ° C mus rau 85 ° C, ntawm no nyob rau hauv lub voj voog ntawm 160 s (ntau lub voj voog yog qhia hauv Cov Lus Qhia Ntxiv 11) . Remarkably, ob lub MLCs hnyav tsuas yog 0.3g tuaj yeem tswj hwm qhov system loj no. Lwm qhov nthuav tshwj xeeb yog tias qhov hloov hluav taws xob tsis tshua muaj peev xwm hloov tau 400V rau 10-15V nrog 79% kev ua haujlwm zoo (Cov Lus Qhia Ntxiv 11 thiab Cov Duab Ntxiv 11.3).
Thaum kawg, peb ntsuas qhov ua tau zoo ntawm cov MLC modules hauv kev hloov thermal zog rau hauv hluav taws xob hluav taws xob. Qhov zoo tshaj plaws η ntawm kev ua tau zoo yog txhais raws li qhov piv ntawm qhov ntom ntawm cov khoom siv hluav taws xob Nd rau qhov ntom ntawm cov khoom siv hluav taws xob Qin (Cov Lus Qhia Ntxiv 12):
Daim duab 3a, b qhia cov efficiency η thiab proportional efficiency ηr ntawm lub voj voog Olsen, feem, raws li kev ua haujlwm ntawm qhov kub thiab txias ntawm 0.5 hli tuab PST MLC. Ob qho ntaub ntawv teev yog muab rau qhov hluav taws xob ntawm 195 kV cm-1. Qhov ua tau zoo \(\ this\) nce mus txog 1.43%, uas yog sib npaug rau 18% ntawm ηr. Txawm li cas los xij, rau qhov kub ntawm 10 K los ntawm 25 ° C mus rau 35 ° C, ηr nce mus txog 40% (xiav nkhaus hauv daim duab 3b). Qhov no yog ob npaug ntawm tus nqi paub rau NLP cov ntaub ntawv sau tseg hauv PMN-PT zaj duab xis (ηr = 19%) hauv qhov kub thiab txias ntawm 10 K thiab 300 kV cm-1 (Ref. 18). Qhov ntsuas kub qis dua 10 K tsis tau txiav txim siab vim tias qhov thermal hysteresis ntawm PST MLC yog nyob nruab nrab ntawm 5 thiab 8 K. Kev lees paub ntawm cov txiaj ntsig zoo ntawm theem hloov ntawm kev ua haujlwm yog qhov tseem ceeb. Qhov tseeb, qhov zoo tshaj qhov tseem ceeb ntawm η thiab ηr yog yuav luag txhua qhov tau txais ntawm qhov pib kub Ti = 25 ° C hauv daim duab. 3a, ib. Qhov no yog vim qhov kev hloov pauv nyob ze thaum tsis muaj daim teb thov thiab Curie qhov kub thiab txias TC yog nyob ib ncig ntawm 20 ° C hauv cov MLCs (Cov Lus Qhia Ntxiv 13).
a,b, kev ua tau zoo η thiab qhov kev faib ua feem ntawm lub voj voog Olson (a)\({\eta }_{{\rm{r}}}=\eta /{\eta}_{{\rm{Carnot}} } rau qhov siab tshaj plaws hluav taws xob los ntawm thaj tsam ntawm 195 kV cm-1 thiab qhov sib txawv pib kub Ti, }}\,\)(b) rau MPC PST 0.5 hli tuab, nyob ntawm qhov kub ntawm qhov sib txawv ΔTspan.
Qhov kev soj ntsuam tom kawg muaj ob qhov cuam tshuam tseem ceeb: (1) txhua qhov kev caij tsheb kauj vab zoo yuav tsum pib ntawm qhov kub siab tshaj TC rau qhov kev hloov pauv hloov pauv (los ntawm paraelectric mus rau ferroelectric) tshwm sim; (2) Cov ntaub ntawv no muaj txiaj ntsig zoo dua thaum lub sijhawm khiav ze rau TC. Txawm hais tias qhov kev ua tau zoo loj tau pom nyob rau hauv peb qhov kev sim, qhov ntsuas kub tsawg tsis tso cai rau peb kom ua tiav cov txiaj ntsig loj vim yog Carnot txwv (\(\Delta T / T\)). Txawm li cas los xij, qhov ua tau zoo tshaj plaws los ntawm cov PST MLCs ua rau Olsen thaum nws hais tias "chav kawm zoo tshaj 20 regenerative thermoelectric lub cev muaj zog ua haujlwm ntawm qhov kub ntawm 50 ° C thiab 250 ° C tuaj yeem muaj qhov ua tau zoo ntawm 30% "17. Txhawm rau kom ncav cuag cov txiaj ntsig no thiab ntsuas lub tswv yim, nws yuav muaj txiaj ntsig zoo siv doped PSTs nrog TCs sib txawv, raws li tau kawm los ntawm Shebanov thiab Borman. Lawv tau qhia tias TC hauv PST tuaj yeem sib txawv ntawm 3 ° C (Sb doping) txog 33 ° C (Ti doping) 22 . Yog li ntawd, peb xav tias cov tiam tom ntej pyroelectric regenerators raws li doped PST MLCs los yog lwm yam ntaub ntawv nrog ib tug muaj zog thawj theem kev hloov yuav sib tw nrog zoo tshaj plaws fais fab harvesters.
Hauv txoj kev tshawb no, peb tshawb xyuas MLCs ua los ntawm PST. Cov khoom siv no muaj xws li Pt thiab PST electrodes, uas yog ob peb lub capacitors txuas nrog tib lub sijhawm. PST tau raug xaiv vim nws yog cov khoom siv EC zoo heev thiab yog li cov khoom siv NLP zoo heev. Nws nthuav tawm qhov kev txiav txim siab thawj zaug ferroelectric-paraelectric theem hloov pauv nyob ib puag ncig 20 ° C, qhia tias nws cov kev hloov pauv hloov pauv zoo ib yam li cov uas tau pom hauv daim duab 1. Zoo sib xws MLCs tau piav qhia tag nrho rau EC13,14 cov khoom siv. Hauv txoj kev tshawb no, peb siv 10.4 × 7.2 × 1 mm³ thiab 10.4 × 7.2 × 0.5 mm³ MLCs. MLCs nrog lub thickness ntawm 1 hli thiab 0.5 hli tau tsim los ntawm 19 thiab 9 txheej ntawm PST nrog lub thickness ntawm 38.6 µm, raws li. Hauv ob qho tib si, PST txheej sab hauv tau muab tso rau ntawm 2.05 µm tuab platinum electrodes. Tus tsim ntawm cov MLCs xav tias 55% ntawm PSTs yog cov nquag nquag, sib xws rau qhov nruab nrab ntawm cov electrodes (Cov Lus Qhia Ntxiv 1). Lub active electrode cheeb tsam yog 48.7 mm2 (Cov lus ntxiv 5). MLC PST tau npaj los ntawm cov tshuaj tiv thaiv theem thiab cov txheej txheem casting. Cov ntsiab lus ntawm cov txheej txheem npaj tau piav qhia nyob rau hauv tsab xov xwm 14 dhau los. Ib qho ntawm qhov sib txawv ntawm PST MLC thiab tsab xov xwm dhau los yog qhov kev txiav txim ntawm B-sites, uas cuam tshuam rau kev ua tau zoo ntawm EC hauv PST. Qhov kev txiav txim ntawm B-sites ntawm PST MLC yog 0.75 (Cov Lus Qhia Ntxiv 2) tau txais los ntawm sintering ntawm 1400 ° C ua raws li ntau pua teev ntev annealing ntawm 1000 ° C. Yog xav paub ntxiv txog PST MLC, saib Cov Lus Qhia Ntxiv 1-3 thiab Cov Lus Ntxiv 5.
Lub ntsiab lus tseem ceeb ntawm txoj kev tshawb no yog nyob ntawm Olson lub voj voog (Fig. 1). Rau lub voj voog zoo li no, peb xav tau cov dej kub thiab txias thiab lub zog hluav taws xob uas muaj peev xwm saib xyuas thiab tswj qhov voltage thiab tam sim no nyob rau hauv ntau yam MLC modules. Cov voj voog ncaj qha no siv ob qhov kev teeb tsa sib txawv, uas yog (1) Linkam modules cua sov thiab cua txias ib qho MLC txuas nrog Keithley 2410 lub zog hluav taws xob, thiab (2) peb cov qauv (HARV1, HARV2 thiab HARV3) ua ke nrog tib lub zog. Hauv qhov kawg, cov kua dej dielectric (silicone roj nrog viscosity ntawm 5 cP ntawm 25 ° C, yuav los ntawm Sigma Aldrich) tau siv rau kev sib pauv cua sov ntawm ob lub pas dej (kub thiab txias) thiab MLC. Lub thermal reservoir muaj ib lub khob ntim ntim nrog cov kua dej dielectric thiab muab tso rau saum lub phaj thermal. Qhov chaw txias txias muaj cov dej da dej nrog cov raj ua kua uas muaj cov kua dej dielectric hauv lub thawv yas loj uas muaj dej thiab dej khov. Ob txoj kev pinch li qub (yuav los ntawm Bio-Chem Fluidics) tau muab tso rau ntawm txhua qhov kawg ntawm kev sib txuas kom hloov cov kua dej los ntawm ib lub reservoir mus rau lwm qhov (Daim duab 2a). Txhawm rau kom ntseeg tau tias thermal sib npaug ntawm pob PST-MLC thiab cov khoom ua kom txias, lub sijhawm voj voog tau txuas ntxiv mus txog rau thaum lub qhov hluav taws xob thiab qhov hluav taws xob thermocouples (ze li ua tau rau pob PST-MLC) pom qhov kub thiab txias. Python tsab ntawv tswj thiab synchronizes tag nrho cov twj paj nruag (qhov chaw ntsuas, twj, li qub, thiab cov thermocouples) kom khiav lub voj voog Olson kom raug, piv txwv li lub voj voog coolant pib caij tsheb kauj vab los ntawm PST pawg tom qab qhov ntsuas qhov ntsuas tau them kom lawv ua kom sov ntawm qhov xav tau. thov voltage rau muab Olson voj voog.
Xwb, peb tau lees paub cov kev ntsuas ncaj qha ntawm cov khoom siv hluav taws xob nrog cov txheej txheem tsis ncaj. Cov kev tsis ncaj ncees no yog ua raws li hluav taws xob xaim hluav taws xob (D) - hluav taws xob teb (E) lub voj voog uas tau sau ntawm qhov sib txawv ntawm qhov kub thiab txias, thiab los ntawm kev suav cov cheeb tsam ntawm ob lub voj voog DE, ib tus tuaj yeem kwv yees kwv yees ntau npaum li cas tuaj yeem sau tau, raws li pom hauv daim duab . ua 2..1b. Cov DE loops no kuj tau sau siv Keithley qhov ntsuas ntsuas.
Nees nkaum-yim 1 hli tuab PST MLCs tau sib sau ua ke hauv 4-kab, 7-kem parallel phaj qauv raws li tus qauv tsim tau piav qhia hauv kev siv. 14. Cov kua dej sib txawv ntawm PST-MLC kab yog 0.75mm. Qhov no yog ua tiav los ntawm kev ntxiv strips ntawm ob sab daim kab xev ua kua spacers nyob ib ncig ntawm cov npoo ntawm PST MLC. PST MLC yog hluav taws xob sib txuas ua ke nrog tus choj nyiaj epoxy hauv kev sib cuag nrog cov electrode ua. Tom qab ntawd, cov xov hlau raug txuas nrog nyiaj epoxy resin rau txhua sab ntawm cov khoom siv hluav taws xob rau kev sib txuas rau lub hwj chim. Thaum kawg, ntxig tag nrho cov qauv rau hauv polyolefin hose. Lub tom kawg yog glued mus rau lub raj dej kom paub meej sealing zoo. Thaum kawg, 0.25 hli tuab K-hom thermocouples tau ua rau txhua qhov kawg ntawm PST-MLC qauv los saib xyuas cov dej nkag thiab qhov hluav taws xob. Ua li no, lub hose yuav tsum xub perforated. Tom qab txhim kho lub thermocouple, siv tib lub nplaum ib yam li ua ntej ntawm lub thermocouple hose thiab xaim los kho lub foob.
Yim tus qauv sib cais tau tsim, plaub qhov uas muaj 40 0.5 hli tuab MLC PSTs faib ua cov phaj sib npaug nrog 5 kab thiab 8 kab, thiab plaub qhov seem muaj 15 1 hli tuab MLC PSTs txhua. nyob rau hauv 3-kem × 5-kab parallel phaj qauv. Tag nrho cov PST MLCs siv yog 220 (160 0.5 hli tuab thiab 60 PST MLC 1 hli tuab). Peb hu ob lub subunits HARV2_160 thiab HARV2_60. Qhov sib txawv ntawm cov kua hauv cov qauv HARV2_160 muaj ob daim kab xev ob sab 0.25 hli tuab nrog cov xaim 0.25 hli tuab ntawm lawv. Rau HARV2_60 tus qauv, peb rov ua cov txheej txheem tib yam, tab sis siv 0.38 hli tuab hlau. Rau symmetry, HARV2_160 thiab HARV2_60 muaj lawv tus kheej cov kua hluav taws xob circuits, twj tso kua mis, li qub thiab txias sab (Cov Lus Qhia Ntxiv 8). Ob chav HARV2 sib faib cov dej kub, 3 liter thawv (30 cm x 20 cm x 5 cm) ntawm ob daim hlau kub nrog cov hlau nplaum tig. Tag nrho yim tus neeg prototypes yog hluav taws xob sib txuas ua ke. Lub HARV2_160 thiab HARV2_60 subunits ua haujlwm ib txhij hauv Olson lub voj voog uas ua rau lub zog sau ntawm 11.2 J.
Muab 0.5mm tuab PST MLC rau hauv polyolefin hose nrog ob sab daim kab xev thiab xaim ntawm ob sab los tsim qhov chaw rau cov kua ntws. Vim nws qhov me me, tus qauv tau muab tso rau ib sab ntawm lub qhov dej kub los yog txias, txo lub sij hawm voj voog.
Hauv PST MLC, qhov hluav taws xob tas li yog siv los ntawm kev siv qhov hluav taws xob tas mus li rau cov cua sov. Yog li ntawd, qhov tsis zoo thermal tam sim no yog tsim thiab lub zog khaws cia. Tom qab cua sov PST MLC, lub teb raug tshem tawm (V = 0), thiab lub zog khaws cia rau hauv nws yog xa rov qab mus rau qhov chaw txee, uas sib haum rau ib qho ntxiv ntawm cov khoom siv hluav taws xob. Thaum kawg, nrog rau qhov voltage V = 0 thov, MLC PSTs tau txias rau lawv qhov pib kub kom lub voj voog rov pib dua. Nyob rau theem no, lub zog tsis tau sau. Peb khiav lub voj voog Olsen siv Keithley 2410 SourceMeter, them nyiaj PST MLC los ntawm qhov chaw hluav taws xob thiab teeb tsa qhov kev sib tw tam sim no rau tus nqi tsim nyog kom cov ntsiab lus txaus tau sau thaum lub sij hawm them nyiaj rau kev suav cov zog.
Nyob rau hauv Stirling cycles, PST MLCs raug them nyob rau hauv voltage qhov chaw hom ntawm qhov pib hluav taws xob teb tus nqi (pib voltage Vi> 0), ib tug xav tau raws li tam sim no kom cov kauj ruam them yuav siv sij hawm ib ncig ntawm 1 s (thiab txaus cov ntsiab lus tau sau rau ib tug txhim khu kev qha suav ntawm lub zog) thiab txias txias. Nyob rau hauv Stirling cycles, PST MLCs raug them nyob rau hauv voltage qhov chaw hom ntawm qhov pib hluav taws xob teb tus nqi (pib voltage Vi> 0), ib tug xav tau raws li tam sim no kom cov kauj ruam them yuav siv sij hawm ib ncig ntawm 1 s (thiab txaus cov ntsiab lus tau sau rau ib tug txhim khu kev qha suav ntawm lub zog) thiab txias txias. Вилинга PST MLC зарсияж истоника натоника нальном энчении эоляог поляоговнное напряя жение V V VI> 0), пелаемом тодй ттемом ттаки этаки звоимает околояоое кля тОачрчек тля джжного расчета энергия) и толодная температуратуратуратуратуратраратзая. Nyob rau hauv Stirling PST MLC cycles, lawv tau them nyob rau hauv voltage qhov chaw hom ntawm tus nqi pib ntawm hluav taws xob teb (initial voltage Vi> 0), qhov xav tau tawm tam sim no, kom lub them theem yuav siv sij hawm txog 1 s (thiab ib tug txaus tus naj npawb. ntawm cov ntsiab lus yog sau rau ib qho kev txhim khu kev qha zog suav) thiab txias txias.在斯特林循环中, PST MLC 在电压源模式下以初始电场值(初始电压Vi > 0) 充电,牀场值骤大约需要1 秒(并且收集了足够的点以可靠地计算能量)和低温. Nyob rau hauv lub voj voog tus tswv, PST MLC raug them ntawm qhov pib hluav taws xob nqi hluav taws xob (pib voltage Vi> 0) nyob rau hauv qhov hluav taws xob qhov chaw hom, yog li ntawd qhov yuav tsum tau ua raws li tam sim no yuav siv sij hawm li 1 vib nas this rau cov kauj ruam them (thiab peb sau cov ntsiab lus txaus rau txhim khu kev qha suav (zog) thiab qhov kub thiab txias. Вциле сцнга PST MLC зарарарарарарарарарариже иежия наточальник Наачальныиениениениениениеммеског поляогорчальное напряж НиT VI> 0), тости эОдеиоы оо о таниари около 1 и иоличек кчек кчрноек кчек тчрноек кчек тчрноек A Ntxuv Xim Tsis pub dhau. . Nyob rau hauv lub voj voog Stirling, PST MLC yog them rau hauv qhov hluav taws xob qhov chaw hom nrog tus nqi pib ntawm hluav taws xob hluav taws xob (pib voltage Vi> 0), qhov yuav tsum tau ua raws li tam sim no yog tias lub sijhawm them nqi yuav siv li 1 s (thiab tus lej txaus ntawm cov ntsiab lus raug sau kom ntseeg tau tias suav lub zog) thiab qhov kub thiab txias.Ua ntej PST MLC ua kom sov, qhib lub voj voog los ntawm kev siv qhov sib txuam tam sim no ntawm I = 0 mA (qhov tsawg kawg nkaus sib piv tam sim no uas peb qhov ntsuas tuaj yeem ua tau yog 10 nA). Raws li qhov tshwm sim, tus nqi tseem nyob hauv PST ntawm MJK, thiab qhov hluav taws xob nce ntxiv thaum cov qauv ua kom sov. Tsis muaj zog yog sau rau hauv caj npab BC vim kuv = 0 mA. Tom qab ncav cuag qhov kub thiab txias, qhov hluav taws xob hauv MLT FT nce (qee zaum ntau dua 30 zaug, saib ntxiv daim duab 7.2), MLK FT raug tso tawm (V = 0), thiab hluav taws xob hluav taws xob khaws cia rau hauv lawv rau tib yam. raws li lawv yog thawj tus nqi. Tib cov ntawv xov xwm tam sim no raug xa rov qab mus rau qhov ntsuas-qhov. Vim qhov nce voltage, lub zog khaws cia ntawm qhov kub thiab txias yog siab dua li qhov tau muab rau thaum pib ntawm lub voj voog. Yog li ntawd, lub zog tau txais los ntawm kev hloov cov cua sov rau hauv hluav taws xob.
Peb siv Keithley 2410 SourceMeter los saib xyuas qhov voltage thiab tam sim no siv rau PST MLC. Lub zog sib thooj yog xam los ntawm kev sib xyaw cov khoom ntawm qhov hluav taws xob thiab tam sim no nyeem los ntawm Keithley's source meter, \ (E = {\int }_{0}^{\tau }{I}_({\rm {meas))}\ left(t\right){V}_{{\rm{meas}}}(t)\), where τ yog lub sij hawm ntawm lub sij hawm. Ntawm peb lub zog nkhaus, qhov txiaj ntsig zoo zog txhais tau hais tias lub zog peb yuav tsum muab rau MLC PST, thiab qhov tsis zoo yog qhov tseem ceeb ntawm lub zog uas peb rho tawm los ntawm lawv thiab yog li lub zog tau txais. Lub zog txheeb ze rau ib lub voj voog sau tau txiav txim los ntawm kev faib lub zog sau los ntawm lub sijhawm τ ntawm tag nrho lub voj voog.
Txhua cov ntaub ntawv raug nthuav tawm hauv cov ntawv tseem ceeb lossis hauv cov ntaub ntawv ntxiv. Cov ntawv thiab thov cov ntaub ntawv yuav tsum raug xa mus rau qhov chaw ntawm AT lossis ED cov ntaub ntawv muab rau hauv kab lus no.
Ando Junior, OH, Maran, ALO & Henao, NC Kev tshuaj xyuas ntawm kev txhim kho thiab kev siv ntawm cov tshuab hluav taws xob thermoelectric rau kev sau qoob loo. Ando Junior, OH, Maran, ALO & Henao, NC Kev tshuaj xyuas ntawm kev txhim kho thiab kev siv ntawm cov tshuab hluav taws xob thermoelectric rau kev sau qoob loo.Ando Junior, Ohio, Maran, ALO thiab Henao, NC Txheej txheem cej luam ntawm kev txhim kho thiab kev siv cov thermoelectric microgenerators rau lub zog sau qoob. Ando Junior, OH, Maran, ALO & Henao, NC 回顾用于能量收集的热电微型发电机的开发和应用. Ando Junior, OH, Maran, ALO & Henao, NCAndo Junior, Ohio, Maran, ALO, thiab Henao, NC tab tom txiav txim siab txog kev txhim kho thiab siv cov thermoelectric microgenerators rau kev sau qoob loo.rov pib dua. kev txhawb nqa. Zog Rev. 91, 376–393 (2018).
Polman, A., Knight, M., Garnett, EC, Ehrler, B. & Sinke, WC Photovoltaic cov ntaub ntawv: tam sim no ua tau zoo thiab cov kev cov nyom yav tom ntej. Polman, A., Knight, M., Garnett, EC, Ehrler, B. & Sinke, WC Photovoltaic cov ntaub ntawv: tam sim no ua tau zoo thiab cov kev cov nyom yav tom ntej.Polman, A., Knight, M., Garnett, EK, Ehrler, B. thiab Sinke, VK Photovoltaic cov ntaub ntawv: kev ua haujlwm tam sim no thiab cov kev cov nyom yav tom ntej. Polman, A., Knight, M., Garnett, EC, Ehrler, B. & Sinke, WC 光伏材料:目前的效率和未来的挑战. Polman, A., Knight, M., Garnett, EC, Ehrler, B. & Sinke, WC Solar cov ntaub ntawv: tam sim no efficiency thiab yav tom ntej cov kev cov nyom.Polman, A., Knight, M., Garnett, EK, Ehrler, B. thiab Sinke, VK Photovoltaic cov ntaub ntawv: kev ua haujlwm tam sim no thiab cov kev cov nyom yav tom ntej.Science 352, Aad4424 (2016).
Nkauj, K., Zhao, R., Wang, ZL & Yang, Y. Conjuncted pyro-piezoelectric nyhuv rau nws tus kheej-powered ib txhij kub thiab siab sensing. Nkauj, K., Zhao, R., Wang, ZL & Yang, Y. Conjunct pyro-piezoelectric nyhuv rau nws tus kheej-powered ib txhij kub thiab siab sensing.Song K., Zhao R., Wang ZL thiab Yan Yu. Ua ke pyropiezoelectric nyhuv rau autonomous simultaneous ntsuas kub thiab siab. Song, K., Zhao, R., Wang, ZL & Yang, Y. 用于自供电同时温度和压力传感的联合热压电效应. Nkauj, K., Zhao, R., Wang, ZL & Yang, Y. Rau nws tus kheej-powering tib lub sij hawm raws li kub thiab siab.Song K., Zhao R., Wang ZL thiab Yan Yu. Ua ke cov nyhuv thermopiezoelectric rau autonomous simultaneous ntsuas kub thiab siab.Tom ntej. alma mater 31, 1902831 (2019).
Sebald, G., Pruvost, S. & Guyomar, D. Zog sau qoob raws li Ericsson pyroelectric cycles nyob rau hauv ib tug relaxor ferroelectric ceramic. Sebald, G., Pruvost, S. & Guyomar, D. Zog sau qoob raws li Ericsson pyroelectric cycles nyob rau hauv ib tug relaxor ferroelectric ceramic.Sebald G., Prouvost S. thiab Guyomar D. Energy harvesting raws li pyroelectric Ericsson cycles nyob rau hauv relaxor ferroelectric ceramics.Sebald G., Prouvost S. thiab Guyomar D. Lub zog sau qoob loo hauv cov ferroelectric ceramics raws li Ericsson pyroelectric cycling. Ntse alma mater. qauv. 17, 15012 (2007).
Alpay, SP, Mantese, J., Trolier-Mckinstry, S., Zhang, Q. & Whatmore, RW Next-generation electrocaloric thiab pyroelectric cov ntaub ntawv rau solid-state electrothermal zog interconversion. Alpay, SP, Mantese, J., Trolier-Mckinstry, S., Zhang, Q. & Whatmore, RW Next-generation electrocaloric thiab pyroelectric cov ntaub ntawv rau solid-state electrothermal zog interconversion. Alpay, SP, Mantese, J., Trolier-Mckinstry, S., Zhang, Q. & Whatmore, RW Электрокалорические и пироэлектрические материалы следующего следующего следующего еобразования твердотельной электротермической энергии. Alpay, SP, Mantese, J., Trolier-Mckinstry, S., Zhang, Q. & Whatmore, RW Lwm tiam electrocaloric thiab pyroelectric cov ntaub ntawv rau cov khoom hauv lub xeev electrothermal zog interconversion. Alpay, SP, Mantese, J., Trolier-Mckinstry, S., Zhang, Q. & Whatmore, RW 用于固态电热能相互转换的下一代电热和热釐电 Alpay, SP, Mantese, J., Trolier-Mckinstry, S., Zhang, Q. & Whatmore, RW Alpay, SP, Mantese, J., Trolier-Mckinstry, S., Zhang, Q. & Whatmore, RW Электрокалорические и пироэлектрические материалы следующего следующего следующего еобразования твердотельной электротермической энергии. Alpay, SP, Mantese, J., Trolier-Mckinstry, S., Zhang, Q. & Whatmore, RW Lwm tiam electrocaloric thiab pyroelectric cov ntaub ntawv rau cov khoom hauv lub xeev electrothermal zog interconversion.Poj niam Bull. 39, 1099–1109 (2014).
Zhang, K., Wang, Y., Wang, ZL & Yang, Y. Txuj thiab daim duab-ntawm-kev ua tau zoo rau quantifying kev ua tau zoo ntawm pyroelectric nanogenerators. Zhang, K., Wang, Y., Wang, ZL & Yang, Y. Txuj thiab daim duab-ntawm-kev ua tau zoo rau quantifying kev ua tau zoo ntawm pyroelectric nanogenerators.Zhang, K., Wang, Y., Wang, Z. Tus qauv thiab cov qhab nia zoo rau kev ntsuas qhov ua tau zoo ntawm pyroelectric nanogenerators. Zhang, K., Wang, Y., Wang, ZL & Yang, Y. 用于量化热释电纳米发电机性能的标准和品质因数. Zhang, K., Wang, Y., Wang, ZL & Yang, Y.Zhang, K., Wang, Y., Wang, Z. Kev ntsuas thiab ntsuas kev ua tau zoo rau kev ntsuas qhov ua tau zoo ntawm pyroelectric nanogenerator.Nano Zog 55, 534–540 (2019).
Crossley, S., Nair, B., Whatmore, RW, Moya, X. & Mathur, ND Electrocaloric cooling cycles in lead scandium tantalate with true regeneration of field variation. Crossley, S., Nair, B., Whatmore, RW, Moya, X. & Mathur, ND Electrocaloric cooling cycles in lead scandium tantalate with true regeneration of field variation.Crossley, S., Nair, B., Watmore, RW, Moya, X. thiab Mathur, ND Electrocaloric cooling cycles in lead-scandium tantalate with true regeneration by means of field modification. Crossley, S., Nair, B., Whatmore, RW, Moya, X. & Mathur, ND 钽酸钪铅的电热冷却循环,通过场变化实现真正的再生。 Crossley, S., Nair, B., Whatmore, RW, Moya, X. & Mathur, ND. Tantalum yog ib qho ntawm cov khoom lag luam zoo tshaj plaws hauv kev lag luam tantalum.Crossley, S., Nair, B., Watmore, RW, Moya, X. thiab Mathur, ND Ib lub voj voog hluav taws xob cua txias ntawm scandium-lead tantalate rau kev rov tsim dua tshiab los ntawm kev thim rov qab.physics Rev. X 9, 41002 (2019).
Moya, X., Kar-Narayan, S. & Mathur, ND Caloric cov ntaub ntawv nyob ze ferroic theem hloov. Moya, X., Kar-Narayan, S. & Mathur, ND Caloric cov ntaub ntawv nyob ze ferroic theem hloov.Moya, X., Kar-Narayan, S. thiab Mathur, ND Caloric cov ntaub ntawv nyob ze ferroid theem hloov. Moya, X., Kar-Narayan, S. & Mathur, ND 铁质相变附近的热量材料. Moya, X., Kar-Narayan, S. & Mathur, ND Thermal cov ntaub ntawv nyob ze ferrous metallurgy.Moya, X., Kar-Narayan, S. thiab Mathur, ND Thermal cov ntaub ntawv nyob ze hlau theem hloov.Nat. alma mater 13, 439–450 (2014).
Moya, X. & Mathur, ND Caloric cov ntaub ntawv rau cua txias thiab cua sov. Moya, X. & Mathur, ND Caloric cov ntaub ntawv rau cua txias thiab cua sov.Moya, X. thiab Mathur, ND Thermal cov ntaub ntawv rau cua txias thiab cua sov. Moya, X. & Mathur, ND 用于冷却和加热的热量材料. Moya, X. & Mathur, ND Thermal cov ntaub ntawv rau cua txias thiab cua sov.Moya X. thiab Mathur ND Thermal cov ntaub ntawv rau cua txias thiab cua sov.Science 370, 797–803 (2020).
Torelló, A. & Defay, E. Electrocaloric coolers: kev tshuaj xyuas. Torelló, A. & Defay, E. Electrocaloric coolers: kev tshuaj xyuas.Torello, A. thiab Defay, E. Electrocaloric chillers: kev tshuaj xyuas. Torelló, A. & Defay, E. 电热冷却器: 评论. Torelló, A. & Defay, E. 电热冷却器: 评论.Torello, A. thiab Defay, E. Electrothermal coolers: kev tshuaj xyuas.Advanced. hluav taws xob. alma mav. 8. 2101031 (2022).
Nuchokgwe, Y. et al. Lub zog loj ntawm cov khoom siv electrocaloric hauv kev txiav txim siab scandium-scandium-lead. Kev sib txuas lus hauv tebchaws. 12, 3298 (2021).
Nair, B. et al. Cov nyhuv electrothermal ntawm oxide multilayer capacitor yog qhov loj tshaj qhov kub ntawm qhov dav. Xwm Txheej 575, 468–472 (2019).
Torello, A. et al. Qhov kub ntau yam hauv electrothermal regenerators. Science 370, 125–129 (2020).
Wang, Y. et al. Kev ua tau zoo ntawm lub xeev electrothermal txias system. Science 370, 129–133 (2020).
Meng, Y. et al. Cascade electrothermal txias ntaus ntawv rau qhov kub thiab txias. National Energy 5, 996–1002 (2020).
Olsen, RB & Brown, DD High efficieincy ncaj hloov dua siab tshiab ntawm tshav kub rau hluav taws xob hluav taws xob ntsuas pyroelectric ntsuas. Olsen, RB & Brown, DD High efficiency ncaj hloov dua siab tshiab ntawm tshav kub rau hluav taws xob hluav taws xob ntsuas pyroelectric.Olsen, RB thiab Brown, DD Muaj txiaj ntsig ncaj qha hloov hluav taws xob rau hauv hluav taws xob hluav taws xob cuam tshuam nrog kev ntsuas pyroelectric. Olsen, RB & Brown, DD 高效直接将热量转换为电能相关的热释电测量. Olsen, RB & Brown, DDOlsen, RB thiab Brown, DD Kev hloov pauv ncaj qha ntawm cov cua sov rau hluav taws xob cuam tshuam nrog kev ntsuas pyroelectric.Ferroelectrics 40, 17–27 (1982).
Pandya, S. et al. Lub zog thiab lub zog ntom ntom hauv cov yeeb yaj kiab ferroelectric nyias. National alma mater. https://doi.org/10.1038/s41563-018-0059-8 (2018).
Smith, AN & Hanrahan, BM Cascaded pyroelectric conversion: optimizing ferroelectric theem hloov thiab hluav taws xob poob. Smith, AN & Hanrahan, BM Cascaded pyroelectric conversion: optimizing ferroelectric theem hloov thiab hluav taws xob poob.Smith, AN thiab Hanrahan, BM Cascaded pyroelectric conversion: ferroelectric theem hloov thiab hluav taws xob poob optimization. Smith, AN & Hanrahan, BM 级联热释电转换:优化铁电相变和电损耗. Smith, AN & Hanrahan, BMSmith, AN thiab Hanrahan, BM Cascaded pyroelectric conversion: optimization ntawm ferroelectric theem hloov thiab hluav taws xob poob.J. Application. physics. 128, 24103 (2020).
Hoch, SR Kev siv cov khoom siv ferroelectric hloov thermal zog rau hauv hluav taws xob. txheej txheem. IEEE 51, 838–845 (1963).
Olsen, RB, Bruno, DA, Briscoe, JM & Dullea, J. Cascaded pyroelectric zog converter. Olsen, RB, Bruno, DA, Briscoe, JM & Dullea, J. Cascaded pyroelectric zog converter.Olsen, RB, Bruno, DA, Briscoe, JM thiab Dullea, J. Cascade Pyroelectric Power Converter. Olsen, RB, Bruno, DA, Briscoe, JM & Dullea, J. 级联热释电能量转换器. Olsen, RB, Bruno, DA, Briscoe, JM & Dullea, J. 级联热释电能量转换器.Olsen, RB, Bruno, DA, Briscoe, JM thiab Dullea, J. Cascaded pyroelectric zog converters.Ferroelectrics 59, 205–219 (1984).
Shebanov, L. & Borman, K. Ntawm cov hmoov lead-scandium tantalate cov khoom daws teeb meem nrog cov nyhuv electrocaloric siab. Shebanov, L. & Borman, K. Ntawm cov hmoov lead-scandium tantalate cov khoom daws teeb meem nrog cov nyhuv electrocaloric siab.Shebanov L. thiab Borman K. Ntawm kev daws teeb meem ntawm txhuas-scandium tantalate nrog cov nyhuv electrocaloric siab. Shebanov, L. & Borman, K. 关于具有高电热效应的钪铅钪固溶体. Shebanov, L. & Borman, K.Shebanov L. thiab Borman K. Ntawm scandium-lead-scandium cov kev daws teeb meem nrog cov nyhuv electrocaloric siab.Ferroelectrics 127, 143–148 (1992).
Peb ua tsaug N. Furusawa, Y. Inoue, thiab K. Honda rau lawv txoj kev pab tsim MLC. PL, AT, YN, AA, JL, UP, VK, OB thiab ED Ua tsaug rau Luxembourg National Research Foundation (FNR) rau kev txhawb nqa txoj haujlwm no los ntawm CAMELHEAT C17/MS/11703691/Defay, MASSENA PRIDE/15/10935404/Defay- Siebentritt, THERMODIMAT C20/MS/14718071/Defay and BRIDGES2021/MS/16282302/CECOHA/Defay.
Department of Materials Research thiab Technology, Luxembourg Institute of Technology (LIST), Belvoir, Luxembourg
Post lub sij hawm: Sep-15-2022